3.2.41 \(\int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx\) [141]

3.2.41.1 Optimal result
3.2.41.2 Mathematica [B] (warning: unable to verify)
3.2.41.3 Rubi [A] (verified)
3.2.41.4 Maple [F]
3.2.41.5 Fricas [F]
3.2.41.6 Sympy [F(-1)]
3.2.41.7 Maxima [F]
3.2.41.8 Giac [F]
3.2.41.9 Mupad [F(-1)]

3.2.41.1 Optimal result

Integrand size = 21, antiderivative size = 215 \[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=-\frac {(4+n) \cos (c+d x) (a+a \sin (c+d x))^n}{d (1+n) (2+n) (3+n)}-\frac {\cos (c+d x) \sin ^2(c+d x) (a+a \sin (c+d x))^n}{d (3+n)}-\frac {2^{\frac {1}{2}+n} n \left (5+3 n+n^2\right ) \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-n,\frac {3}{2},\frac {1}{2} (1-\sin (c+d x))\right ) (1+\sin (c+d x))^{-\frac {1}{2}-n} (a+a \sin (c+d x))^n}{d (1+n) (2+n) (3+n)}-\frac {n \cos (c+d x) (a+a \sin (c+d x))^{1+n}}{a d \left (6+5 n+n^2\right )} \]

output
-(4+n)*cos(d*x+c)*(a+a*sin(d*x+c))^n/d/(n^3+6*n^2+11*n+6)-cos(d*x+c)*sin(d 
*x+c)^2*(a+a*sin(d*x+c))^n/d/(3+n)-2^(1/2+n)*n*(n^2+3*n+5)*cos(d*x+c)*hype 
rgeom([1/2, 1/2-n],[3/2],1/2-1/2*sin(d*x+c))*(1+sin(d*x+c))^(-1/2-n)*(a+a* 
sin(d*x+c))^n/d/(n^3+6*n^2+11*n+6)-n*cos(d*x+c)*(a+a*sin(d*x+c))^(1+n)/a/d 
/(n^2+5*n+6)
 
3.2.41.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2131\) vs. \(2(215)=430\).

Time = 23.74 (sec) , antiderivative size = 2131, normalized size of antiderivative = 9.91 \[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=\text {Result too large to show} \]

input
Integrate[Sin[c + d*x]^3*(a + a*Sin[c + d*x])^n,x]
 
output
(2*(Hypergeometric2F1[1/2 + n, 1 + n, 3/2 + n, -(Sqrt[Sec[c + d*x]^2] + Ta 
n[c + d*x])^2] - 6*Hypergeometric2F1[1/2 + n, 2 + n, 3/2 + n, -(Sqrt[Sec[c 
 + d*x]^2] + Tan[c + d*x])^2] + 12*Hypergeometric2F1[1/2 + n, 3 + n, 3/2 + 
 n, -(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2] - 8*Hypergeometric2F1[1/2 + 
n, 4 + n, 3/2 + n, -(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2])*Sin[c + d*x] 
^3*(a + a*Sin[c + d*x])^n*(a + (a*Tan[c + d*x])/Sqrt[Sec[c + d*x]^2])^n*(1 
 + 2*Sqrt[Sec[c + d*x]^2]*Tan[c + d*x] + 2*Tan[c + d*x]^2)^2*(1 + (Sqrt[Se 
c[c + d*x]^2] + Tan[c + d*x])^2)^n)/(d*(1 + 2*n)*(Sqrt[Sec[c + d*x]^2] + T 
an[c + d*x])^3*((4*n*(Hypergeometric2F1[1/2 + n, 1 + n, 3/2 + n, -(Sqrt[Se 
c[c + d*x]^2] + Tan[c + d*x])^2] - 6*Hypergeometric2F1[1/2 + n, 2 + n, 3/2 
 + n, -(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2] + 12*Hypergeometric2F1[1/2 
 + n, 3 + n, 3/2 + n, -(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2] - 8*Hyperg 
eometric2F1[1/2 + n, 4 + n, 3/2 + n, -(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x] 
)^2])*(a + (a*Tan[c + d*x])/Sqrt[Sec[c + d*x]^2])^n*(Sec[c + d*x]^2 + Sqrt 
[Sec[c + d*x]^2]*Tan[c + d*x])*(1 + 2*Sqrt[Sec[c + d*x]^2]*Tan[c + d*x] + 
2*Tan[c + d*x]^2)^2*(1 + (Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2)^(-1 + n) 
)/((1 + 2*n)*(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2) - (6*(Hypergeometric 
2F1[1/2 + n, 1 + n, 3/2 + n, -(Sqrt[Sec[c + d*x]^2] + Tan[c + d*x])^2] - 6 
*Hypergeometric2F1[1/2 + n, 2 + n, 3/2 + n, -(Sqrt[Sec[c + d*x]^2] + Tan[c 
 + d*x])^2] + 12*Hypergeometric2F1[1/2 + n, 3 + n, 3/2 + n, -(Sqrt[Sec[...
 
3.2.41.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.99, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {3042, 3262, 3042, 3447, 3042, 3502, 3042, 3230, 3042, 3131, 3042, 3130}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^3(c+d x) (a \sin (c+d x)+a)^n \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (c+d x)^3 (a \sin (c+d x)+a)^ndx\)

\(\Big \downarrow \) 3262

\(\displaystyle \frac {\int \sin (c+d x) (\sin (c+d x) a+a)^n (n \sin (c+d x) a+2 a)dx}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sin (c+d x) (\sin (c+d x) a+a)^n (n \sin (c+d x) a+2 a)dx}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\int (\sin (c+d x) a+a)^n \left (a n \sin ^2(c+d x)+2 a \sin (c+d x)\right )dx}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (\sin (c+d x) a+a)^n \left (a n \sin (c+d x)^2+2 a \sin (c+d x)\right )dx}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {\int (\sin (c+d x) a+a)^n \left (n (n+1) a^2+(n+4) \sin (c+d x) a^2\right )dx}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int (\sin (c+d x) a+a)^n \left (n (n+1) a^2+(n+4) \sin (c+d x) a^2\right )dx}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3230

\(\displaystyle \frac {\frac {\frac {a^2 n \left (n^2+3 n+5\right ) \int (\sin (c+d x) a+a)^ndx}{n+1}-\frac {a^2 (n+4) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+1)}}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {a^2 n \left (n^2+3 n+5\right ) \int (\sin (c+d x) a+a)^ndx}{n+1}-\frac {a^2 (n+4) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+1)}}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3131

\(\displaystyle \frac {\frac {\frac {a^2 n \left (n^2+3 n+5\right ) (\sin (c+d x)+1)^{-n} (a \sin (c+d x)+a)^n \int (\sin (c+d x)+1)^ndx}{n+1}-\frac {a^2 (n+4) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+1)}}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {a^2 n \left (n^2+3 n+5\right ) (\sin (c+d x)+1)^{-n} (a \sin (c+d x)+a)^n \int (\sin (c+d x)+1)^ndx}{n+1}-\frac {a^2 (n+4) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+1)}}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

\(\Big \downarrow \) 3130

\(\displaystyle \frac {\frac {-\frac {a^2 2^{n+\frac {1}{2}} n \left (n^2+3 n+5\right ) \cos (c+d x) (\sin (c+d x)+1)^{-n-\frac {1}{2}} (a \sin (c+d x)+a)^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2}-n,\frac {3}{2},\frac {1}{2} (1-\sin (c+d x))\right )}{d (n+1)}-\frac {a^2 (n+4) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+1)}}{a (n+2)}-\frac {n \cos (c+d x) (a \sin (c+d x)+a)^{n+1}}{d (n+2)}}{a (n+3)}-\frac {\sin ^2(c+d x) \cos (c+d x) (a \sin (c+d x)+a)^n}{d (n+3)}\)

input
Int[Sin[c + d*x]^3*(a + a*Sin[c + d*x])^n,x]
 
output
-((Cos[c + d*x]*Sin[c + d*x]^2*(a + a*Sin[c + d*x])^n)/(d*(3 + n))) + (-(( 
n*Cos[c + d*x]*(a + a*Sin[c + d*x])^(1 + n))/(d*(2 + n))) + (-((a^2*(4 + n 
)*Cos[c + d*x]*(a + a*Sin[c + d*x])^n)/(d*(1 + n))) - (2^(1/2 + n)*a^2*n*( 
5 + 3*n + n^2)*Cos[c + d*x]*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1 - Sin[ 
c + d*x])/2]*(1 + Sin[c + d*x])^(-1/2 - n)*(a + a*Sin[c + d*x])^n)/(d*(1 + 
 n)))/(a*(2 + n)))/(a*(3 + n))
 

3.2.41.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3130
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2^(n + 
 1/2))*a^(n - 1/2)*b*(Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x]]))*Hypergeome 
tric2F1[1/2, 1/2 - n, 3/2, (1/2)*(1 - b*(Sin[c + d*x]/a))], x] /; FreeQ[{a, 
 b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]
 

rule 3131
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a^IntPar 
t[n]*((a + b*Sin[c + d*x])^FracPart[n]/(1 + (b/a)*Sin[c + d*x])^FracPart[n] 
)   Int[(1 + (b/a)*Sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && 
EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] &&  !GtQ[a, 0]
 

rule 3230
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1))   Int[(a + b*Sin[e 
 + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] 
&& EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 3262
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*(a + b*Sin[e + f*x]) 
^m*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + n))), x] + Simp[1/(b*(m + n))   In 
t[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 2)*Simp[d*(a*c*m + b*d*( 
n - 1)) + b*c^2*(m + n) + d*(a*d*m + b*c*(m + 2*n - 1))*Sin[e + f*x], x], x 
], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[n]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.2.41.4 Maple [F]

\[\int \left (\sin ^{3}\left (d x +c \right )\right ) \left (a +a \sin \left (d x +c \right )\right )^{n}d x\]

input
int(sin(d*x+c)^3*(a+a*sin(d*x+c))^n,x)
 
output
int(sin(d*x+c)^3*(a+a*sin(d*x+c))^n,x)
 
3.2.41.5 Fricas [F]

\[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=\int { {\left (a \sin \left (d x + c\right ) + a\right )}^{n} \sin \left (d x + c\right )^{3} \,d x } \]

input
integrate(sin(d*x+c)^3*(a+a*sin(d*x+c))^n,x, algorithm="fricas")
 
output
integral(-(cos(d*x + c)^2 - 1)*(a*sin(d*x + c) + a)^n*sin(d*x + c), x)
 
3.2.41.6 Sympy [F(-1)]

Timed out. \[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=\text {Timed out} \]

input
integrate(sin(d*x+c)**3*(a+a*sin(d*x+c))**n,x)
 
output
Timed out
 
3.2.41.7 Maxima [F]

\[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=\int { {\left (a \sin \left (d x + c\right ) + a\right )}^{n} \sin \left (d x + c\right )^{3} \,d x } \]

input
integrate(sin(d*x+c)^3*(a+a*sin(d*x+c))^n,x, algorithm="maxima")
 
output
integrate((a*sin(d*x + c) + a)^n*sin(d*x + c)^3, x)
 
3.2.41.8 Giac [F]

\[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=\int { {\left (a \sin \left (d x + c\right ) + a\right )}^{n} \sin \left (d x + c\right )^{3} \,d x } \]

input
integrate(sin(d*x+c)^3*(a+a*sin(d*x+c))^n,x, algorithm="giac")
 
output
integrate((a*sin(d*x + c) + a)^n*sin(d*x + c)^3, x)
 
3.2.41.9 Mupad [F(-1)]

Timed out. \[ \int \sin ^3(c+d x) (a+a \sin (c+d x))^n \, dx=\int {\sin \left (c+d\,x\right )}^3\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^n \,d x \]

input
int(sin(c + d*x)^3*(a + a*sin(c + d*x))^n,x)
 
output
int(sin(c + d*x)^3*(a + a*sin(c + d*x))^n, x)